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1.  INTRODUCTION 

A binary tree is a finite set of nodes, either empty or containing one node 

called a root, such that all other nodes are partitioned into disjoint sets which 

are respectively called left and right subtrees of the root. The subtrees also 

satisfy the definition of a binary tree. Thus, a binary tree is an unlabelled 

rooted arborescence with successors of at most degree two distinguished only as 

left and right. 

Figure 1.1 shows a binary tree with six nodes. The root node is shown at 

the top and is connected by arcs to two immediate successor nodes which are the 

roots of its left and right subtrees. Each node with no successors (for in- 

stance, the left subtree of the root) is called a leaf. The level of a node 

indicates how deep it is within the tree. Thus the root has level one, its 

immediate successor nodes have level two, and so forth down the occupied por- 

tions of the subtrees. The height of a binary tree is the largest occupied 

level. A full binary tree has no internal vacancies (unoccupied node positions). 
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FIGURE 1.1 - A Binary Tree with Six Nodes 
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Binary trees are frequently used as iuioroatlon storage structures on 

digital computers. For instance, one of rhe most popular methods of randomly 

retrieving information by a key, or symbol, is to store the key data in a 

binary tree. To search for a partlculcr symbol, we begin by looking at the 



root and proceed by applying Che following rulec recursively: 

1. If the symbol matches the root symbol, the symbol is found. 

2. If the symbol is "less than" the root (according to some binary 
ordering relation) continue the search by considering the left 
successor of the root as the new root (of the left subtree). 

3. If the symbol is greater than the root, continue by searching the 
right subtree. 

4. If there is no root, the symbol is not in the binary tree. 

We assume for simplicity that all symbols are distinct with respect to the 

ordering relation. Otherwise, the ordering relation and search must be modi- 

fied in an obvious fashion. The construction of a binary tree for use by such 

a search scheme may be performed by sequentially examining the key symbols to 

be inserted. This binary tree sort is a one pass ordering procedure which 

proceeds: 

1. If there is no root, insert the symbol as the root. 

2. If the symbol is less than the root symbol, continue by considering 
the left subtree. 

3. If the symbol is greater than the root symbol, continue with the 
right subtree. 

As an example, consider the six symbols ABCDEF and a lexicographical binary 

ordering relation. Suppose that the particular permutation of symbols ex- 

amined is BDAFCE. The resulting binary tree is shown in Figure 1.2, and has 

structure identical to the tree in Figure 1.1. Note that this same tree may 

have resulted from other permutations of the same symbols, for instance 

BADCFE. Therefore, there is a many-to-one mapping of key symbol permutations 

to corresponding binary trees. 
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FIGURE 1.2 - A Binary Tree with Inserted Symbols 



The height of the binary tree in Figure 1.2 is four and thus the maximum 

number of comparisons required to Insert another symbol is four.  Similarly, 

if this tree is used for retrieving symbols, the maximum search length for a 

symbol in the tree is four, and for a symbol not found the maximum is five. 

A computer implementation of a binary tree storage structure requires 

that each node be represented by its key symbol accompanied by sufficient 

additional information to identify and access the left and right subtrees. 

This is usually accomplished by use of a dense array of rode symbols each 

with left and right pointers, by node storage via address calculation into an 

array space sufficient to store all possible binary trees with a given number 

of nodes and some maximum height, or by some similar method. 

In the following sections we study this widely used class of binary trees 

in order to provide information useful in examining algorithms based on this 

storage structure. A closed form counting formula for the number of binary 

trees with n nodes and height k is developed and restated as a recursion more 

useful computationally. A generating function for the number of nodes given 

height is developed and used to find the asymptotic distribution of binary 

trees. An asymptotic probability distribution for height given the number of 

nodes is derived based on equally likely binary trees. This is compared with 

a similar result for general trees. 

Random binary trees (those resulting from the binary tree sorting algo- 

rithm applied to random strings of symbols) are counted in terms of the mapping 

of permutations of n symbols to binary trees of height k. An explicit formula 

for this number is given with an equivalent recursive definition for computa- 

tional use. A generating function is derived for the number of symbols given 

height. Lower and upper bounds on random binary tree height are developed and 

shown to approach one another asymptotically as a function of n, providing a 

limiting expression for the expected height. 



■ 

The random binary trees are examined further to provide expressions for 

ehe expectations of the number of vacancies at each level, the distribution of 

vacancies over all levels, the comparisons required for Insertion of a new 

random symbol, the fraction of nodes occupied at a particular level, the number 

of leaves, the number of single vacancies at each level, and the number of twin 

vacancies at each level. A random process is defined for the number of symbols 

required to grow a tree exceeding any given height. 

Finally, an appendix Is given with sample tabulations and figures of the 

distributions. 

2.  NUMBER OF BINARY TREES OF A GIVEN HEIGHT. 

In this section we consider the problem of finding the number of binary 

trees with n nodes and height k. Denote this number by t(n,k) , where n 

and k are positive integers.  Since t(n,k) - 0 unless 

k < n ^ Z16 - 1 (2.1) 

we are only concerned with integers n ■ 1,2,...; k ■ 1,2,... satisfying the 

inequality (2.1). 

An explicit formula for the numbers t(n,k) can be obtained by the fol- 

lowing simple combinatorial argument.  Consider the class of all binary trees 

with n nodes and height k which have exactly m. nodes at the level J+l, 

j"l,...,k-l. Let m. ■ £. + r. , where Z.    and r  are numbers of nodes 

which are left successors and right successors of nodes at the level J. In 

other words, I.    is the number of nodes at level 1+1 at the end of left 

going arcs emanating from nodes at level J. These can be selected in I ^"* I 

/Vi\ \ li  ' ways,  and the    r.    nod- ^  in ways.    Thus,   the  total    number of 
j \   rj   / 

ways  to arrange the arcs between nodes at levels    j    and    j+l    is given by 
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^.A/"i-i\. /2,nj-i 
/ \  ^. /    \ ra 

(2.2) 

Since m - 1 (the root) and OL +•••+ m. - n-1 with m. ^. 1 for j-1 k 

we obtain from (2.2) the formula 

--•sCJCHt:) ■     - 
where the summation is over all integers m. , J«I(...fk satisfying 

»j i 1 , j-l k-1 , 

and 

m. +• • •+ nL_ - n-1 . 

The formula is valid for n>l and k satisfying (2.1), for n-1 we have 

trivially  t(l,l) - 1. 

Although (2.3) Is an explicit formula for the number t(n,k)  It is not 

very convenient for calculation. An alternate way is through a recurrence. 

Let 
t(n,k) - T(n,k) - T(n,k-1),  n >, 1, k >. 1 (2.4) 

where    T(n,k)    is  the number of binary trees with    n    nodes and height not 

exceeding    k.    If we define 

!1    if    n-0 
(2.5) 

0    if    n>0 

and T(0,k) ■ 1 for k >_ 0 , we obtain the recurrence relation 

n 

T(n+l,k+l) - ^ T(J,k)T(n-j,k) , (2.6) 

j-o 



valid for    n>0    and    k>0.    This follows from the fact that the class of all 

binary  trees with    n+I    nodes and height not exceeding    k+1    can be partitioned 

Into    n+1    subclasses according to the number of nodes    j     In the left subtree 

of root.    Since the heights of both the left and right subtrees must not exceed 

k    the number of trees in the    J-th    class is  the product    T(j ,k)T(n-j ,k),  and 

(2.6)   follows. 

Note that with the convention (2.3)   the recurrence  (2.6)  yields automatically 

T(n,k)  - 0      for      n > 2k - 1  , 

and that for 0 £ n <. k , T(n,k)  is just the number of binary trees with n 

nodes. It is well known (see [Knuth, vol.3]) that the latter are Catalan 

numbers 

c 
n - ^l(

2°) . »10 (2.7) 

so that 

T(n,k) - C   for  0 < n < k. (2.8) 
n -  — 

From the recurrence  (2.6)   one easily obtains  the sequence enumerators 

defined by 

fk(x)  "    ^T<n.k)xn .    k> 0  . (2.9) 
n>p 

Since the right-hand side of (2.6) is the Cauchy product, we have immediately 

J^ T(n+l,k+l)xn - flixi   . 
n>0 

from which in view of  (2.5)  we obtain 

fk+1(x)   - 1 + x f*(x)   .    k >_ 0   , 

with f0(x)  - 1  . 

(2.10) 



Note that f. (x) Is a polynomial In x , hence if x Is regarded as a complex 

variable f. , k"0,l  Is a sequence of entire functions. 

We now show that this sequence converges uniformly In a circular region 

of the complex plane, specifically that as k, + » 

f^U) -► w(z)  uniformly for  |t| i T  » (2.11) 

where 

n-0 

To see this, note that with C  as in (2.7) we have T(n,k) < C  for all k 
n — n 

which together with (2.8) yields 

0,(2) - fk(2) - 2
k ^ (Cn-T(n,k))2

I1_k , 

n>k 

so that for      lzl f. T 

U(z) - fk(z)| 1 ^ Cn |2|n <^GU  4-n , 

n>k n>k 

which is a call of the expansion  U(T ) " 2 . 

This result will now be used to develop an asymptotic distribution of 

tne numbers t(n,k) as k -*- <» .  In doing this, we follow the method of 

Renyi and Szekeres used in [8] for a similar problem. 

From (2.4) we have for k >_ 1,  t(0,k) - 0 , 

^\(n,k)2Q - fk(z) - fk_1(z) , (2.13) 

n>p 

which are entire functions for every k >_ 1. Hence by the Cauchy formula 

1  if £k(z) " fk-l(z) t(a'k) - 2^ f 2^1      
d2  • (2-14> 



where we take Che circle |z| a T  as the contour of Integration. To estimate 

the Integral we use Laplace's method by first showing that as k -* « the only 

significant contribution of the Integrand Is In the vicinity of positive real 

axis. 

Let F(*.z) - 1 + "£ e^z2 , -*<*<_* (2.15) 

and let for    $    fixed 

Fk+1(*,z) - FU,FkO,z))   ,    k > 1 , 

F^.z)      - FU.z)   . 

111611 i    tä 
yie^)  - F^.D   , k > 1  , (2.16) 

i.e.  f,  are iterates of the function F . For z ■ -r e    the function 
k 4 

u(z) defined by (2.12) satisfies 

FU.u») - H . (2.17) 

and is given by 

where    Re/1-e      ?_ 0  •    The curve    uf-r •    ) •    -^ < * ^ ^    is therefore  the 

curve of fixed points of the function    F(}>,')-    For any particular    t>    the 

derivative 

Jj F(^z)  - F^^.z)  - j e^z so that 

for    z « oj   we have 

\rto,4\  - ije1*«!   -  |1 - /77*   |       . (2.19) 

The locus of points    / 1-e        ,  -T: < ^ ^ ir    in the complex plane    is an 

Lemniscate of tlemouili with polar equation    p    » 2 cos 9, while    1 - / 1-e 

8 



Just shifts the curve one unit to the right.    (See Figure 2.1) 
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FIGURE 2.1 

IF'U.U)! ii , (2.20) 

with equality If and only If    *-0.    Thus,  If    ^0    all fixed points   (2.18) 

are atractlve and since    f,     are iterates of the function    F    converging to 

u    this implies that as    k ■*■ <*> 

(2.21) yie^-^le^+O^l./W^l') 

uniformly for     |^|   >_ e > 0. 

The modulus     |l - / 1-e       ]    is a decreasing function of    |^j     in 

0 <^ |<p|   <_ IT    with maximum    1    at    $ ■ 0.    Further denoting    u (|)  + iv  ($) 

■ 1 - /l-e the real and imaginary parts have asymptotic expansions 

v*)-i-/r-*(/rM*j/i). 
^w • */T * (/TJ * <>{*in). 

as    l^j * 0 .     Hence for sufficiently small     |^|       |l-  /l-e1*  | <. 1 - i /|#jf 

i    r        /.£n2k\2 

and thus if we choose for instance    |^|   <_   l—r—1       we obtain from (2.21) 

(2.22) 



as    k ■»• • 

^^•-(^M«-**) • (a.a) 
RlMtrlc;    The same result can also be obtained more directly by writing 

fk+1(2) - u(z)  - 1 + z f^(z)  -   (1 - z a)2(z)) 

- z[fk(z) - U(z)][f]c(z) + a)(z)]. 

Then choose e > 0 such that  I"» (4 e ) I i • for aJ-1 4* and choose K 

such that k >_ K=^|fk(^ e
1*) - ui(j e1*) | < e . Then with z - -j e1* for 

k ^ K 

lfk+l- ul - ^^-^1(21^1 + «) 

whence for all m >_ 1 

'^-•ii |fK- 0,1(11-/^7*1 +e),n . 

Hence (2.23)  follows by the same argument as before. 

1    i* 
If we now substitute (2.23)  into (2.14) we have with    2 - -j e 

d4 

(2.24) 

1*1 < (W 
as k ->> • . 

To estimate the remaining integral we first set ^ s 0 and call 

\-fk(i)   • (2-25) 
The recurrence (2.10) yields 

\fi-i+H ' ao"i (2-26) 

10 



from which by substitution   Yi, " 2 - ou    we obtain the recurrence 

Yk+i
- \'hl ' Yo ■1 • (2-27) 

Thus Yu is the k-th iterate of the function &i(x) - x - T- x2 » and iterates 

of such functions can be handled by standard methods (see e.g. [de Bruijn, 3, 

sec. 8.7 or Exercise 8.11]). We obtain the asymptotic expansion 

4      4 £n k ^ n/,-2. Yk" k - —^r+ 0(k ) '    or 

fk(i) " 2' r + ^~T!5 +0(k"2)     as     k^-- (2-28) 

To obtain the expansion for    |^|   <    (—r—)        we assume that it has the form 

where C,     •  i(frk2 . 

For    $    fixed we  then have ^ ., " ^ + v ^k      so  that 

/I    iA               M! "^^ 5)          £n(k+1) 1 -2 
fk+i (i e   ) " 2 "         +    7   82(5 + k 0 + 0(k   5  ' "^^V* / k + 1 (k+l)2       Z K 

where      C a 5k  •    Using the expansion 

gl(5 +r 0 ' gl(5) "^ k 8ia) + ,"      ' 

g2(5 +^0 - g2(C) +| |J<€) + '••      . 

_L.i _J_ .   i    i   . i 
k+l      k   1+k-l k-k2      k3-  -•     ' 

(2.29) 

(k+i)2"   k2  ^T1?"?"?*- ' ** 

£n(k+l) - £n k +   -    -     •••     ,    we obtain after collecting  terms 

11 



+  -2 [g^O - Cs[<01 -  ^ [2g2(0 - Cf^«)] + o(k"2) . 

On the other hand from (2.10)      ^("J e1*) - 1 + -j e1* f^ (^ e1*)    , 

(JL)2 2 

whence using (2.29)  end        • * ■ «^ '   ■ 1 +f £1     +•••,      we have 

k.4 

+  -, I X gi(0 + 52] - ^M * SiCOg^O + 0(k_2) 

Compering terms of (2.30) and (2.31) we obtain 

2g2(C) - Sg^O - I g1(5)g2(0  , 

with Initial conditions g1(0) - g«^) ■ 4 from (2.28). These equations 

have a solution 

g:L(0 - 2C cot I 5 » g2(0 - 52(sln j O"2 , 

which, when substituted back Into (2.29),  gives 

■£n_k    „2, 

2  v2 

(2.30) 

(2.31) 

f, (i e^)- 2 - f 5 cot i C +   ^Ji    ^(gin 1 c)-2   +   0^-2), 

(2.32) 

where    ^ - l*k2  .     |*|   < (^)      . 

fk(A e^) - ^(i e^) - ^ ^ cot i ^ 

" K cot K + ^k (sin K )'2 

" ^"^ 4.! (sin J e,.,)"2    *    0(k-3)     , 
(k-1)2      ^ i ^    ^ i 

12 



and setting ^_1 - 5 - ^5 , 5 - 5k .so that -j~ - -^ , and using 

the expansions 

cot | u - 7 o -cot i ?+ IT 
c(sin 2 0"2 

2 

-L cot ^ 5 (sin i O2   + •••     , 
4k2 2 2 

fci  (k-1)  - in k - £ + •"     .      and 

(sin ± (5 -£*))'     -    («in-io" d+rC coti«+ ••• ), 2^     v-.-t*««^ 

we obtain 

. inJi ^ cot 1 .  (sin 1 5)-2 +   ^ (sin 1 0-2 

k3 • * k Z 

. _§_    cot ^  (sin i O"2 + 0(k"3)   . 
4k3 

2      2 

r,  for    c.2 - i^k2   ,     |$|   <(T-^)        . we have 

1 2 1-2 
5 cot y 5 - 0(£n k)     ,    |sln j C|        ^0     as   k^» , 

so that we can write 

Howeve 

k' sin 

The same expansion can also be obtained by again substituting (2.32) into 

the recurrence (2.10).  If we now insert (2.33) into the integral in (2.24) 

and use the substitution ;2 - i^k2 , (2.24) becomes 

13 



where the path of Integration F as determined from the condition 

♦ < m * (see Figure 2.2): 
5 - T(-1 + 1)  for   - — £n2k < T <. 0 , 

/2 

5 - T(1 + 1)   for   0 <. T < -i— Za2V.  . 

FIGURE 2.2 

The Integrand Is a meromorphic function with poles at 

I     - 2Trm n 
m-±l,±2,..., (2.35) 

and corresponding residues 

•(5m) - 4[3(2inn)2 - 2 Sy (2™)** j e      k 
-% (27rm)2 

(2.36) 

Before applying the residue theorem, we have to close the path of Integra- 

tion, for Instance by the arc (see Figure 2.2) 

A:    e-P^"19 ,    Pk-*A ,    -i<9 <f  . 

Deforming the arc In the neighborhood of the real axis so that It passes 

r     i 2     2       2 
approximately in between the two poles we have from {sin z{  - sin x + slnh y 

|sln j cj'2 <_ 1 + n ,  n > 0 

along Che arc for large enough k, . Hence 

14 



*- -2 ir/Z      - ■S- P^ sin 6 
k2 

e d0 
/3  2 ^ J 

< (l+n)pk    /     e d9   -   2^    l1-6 

Jo 

2    2 
(l+n)Tr p    k n - 

<_  —p*    -    0(£n k)      as      k-«    . (2.37) 
2ii k2 

Finally, applying the residue theorem to the integral over the contour    r + A 

and using  (2.34),   (2.36)  and  (2.37) we have the asymptotic expansion 

t(n,k)  - 4n+1   \   ]^ I"2 V2^** - 3(2mn)2 j a 

 r(2Tnn) 
kz 

♦      ^e-^") ♦   *«o(^)   *   4"o(^)      • (2.38) 

From here we can get the distribution of heights of binary trees with n 

or equivalently the probability that a randomly selected binary tree has height 

k if all binary trees with n vertices are considered equally likely. 

Calling this quantity o (k) we have 

(lc). tteja.   t (2t39) 

n 

where   C    m    y     t(n,k)     is   the catalfta number (2.7).    Using the asymptotic 

k 

expansion [6]      Cn -    "T/z    +    0 ( ^ ^     ) we obtain for large k and n, 
n        rw 

15 



m>l 
pn(k)  ■ • /f      ß2 ^ ^(ZTm)1* - 3(27nn)2 le 

(2.40) 

where    ß -   —r    .    Note that if    k <, a , which Is the case of Interest,  the 
k 

dominant 0-term Is the last one.    Thus, if for some arbitrarily small   5 > 0 

a3/8 + 6    ilcin    ^ (2>41) 

then as    B ♦ • 

pn(k) ~ 8/y   ß2    S   [20(2inil)'+ - 3(21nn)2] e '(2ina)  ß  . (2.42) 
m-1 

To verify that  (2.42)  Is Indeed a probability distribution note that as 

a -»• « 

^pa(k) ~ s/r / 32 E [2e(2™),+ -3(27nn)2]e "(2im)2s dk • 
k m-1 

where the limits of summation and integration are given by  (2.41).    Making a 

substitution 

i / n 
/   S 

we have as    n -»- » 

4  /.     /   f    i(2Tm)'     I     2S3/2 e-(2im)  3 dS 

BPl J* 

[ -   cV /    3ä
1/2 . -<2">23 d6 

16 



But 
CD 

/ 

3öl/2 e-(2TO)2S d. „ 2a3/2 e-(2TO)2a 

0 

and we are left with 

I 23
3/2 e- +    (2^a   I    2S
3/2 e^2^'3 dß    • 

lio   4/r  Y^    2(2Tm)2 33/? e 2 .3/2      -(27ra)23 

e-»o+ , 

,     -u2 
u^ e        du - 1 

2 2 
by  the substitution u    ■  (2-nm)    i 

If we denote 3C      as  the random variable with distribution    p   (1c)     and  call  the a n 

asymptotic distribution function 

F(x)  -    lim P(   —    < x) (2.43) 

- n-H»    \ 2»^n 

we obtain by integrating the right-hand side of (2.42)   over    0 ^ k <_ 2x r^j 

by the same method as above 
, 2 

F(x)  - 4x-3 T5/2    2-!»2  « *   ) (2-44) 
m-l 

It can easily be seen from (2.43) that tor x ■ o(/ä)        F(x) ♦ 0 and 

thus the asymptotic distribution (2.42) or equivalently (2.43), (2.44) is 

valid for all k in the range (2.1) as n - ».  (See Appendix, Figure A.l). 
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This is identical vita cue dlscrlbutlcm function obtained by Renyi and 

Szekeres (see [8] p. 5U6) for the height of general (as opposed to binary) 

trees. Only tne normalizing factors in (3.43) differs by a constant, namely 

i/J .  More precisely, if i£   is the height of a general tree with n nodes 

(i.e. with no restriction on the number of successors of a node) then for 

large n 

X ~/2 X*  . (2.45) 
n       n 

a somewhat surprising result. 

3.     BINARY TREES GENERATED  BY RANDOM PERMUTATIONS. 

As described in the introduction Che tree insertion algorithm defines a 

map which assigns to every permutation    7r(l a)    a binary tree with    n 

nodes.    If  all permutations of integers    l,...,n    are considered equally 

likely the resulting trees are referred to as random.    Thus,  every numerical 

quantity defined on a binary r.ree becomes a random variable. 

Let    H     be the height of a random binary tree with    n    nodes,   i.e., 

generated by random permutations  of the first    n    integers.     Clearly,  the 

probability 

P(H   < k) - JrKn.k)  , (3.1) n -* n. 

where    3(n,k)    is the number of permutations    ir(l,...,a)     mapped into trees 

with height not exceeding    k   .     (See Appendix, Table A.2). 

In order to obtain an explicit expression for  (3.1)  we first need a 

suitable indexing system for  the nodes,    t natural way to do this is  to con- 

sider  first a full binary tree and label its nodes by the  sequence of 

positive integers starting from the root and labelling in each subsequent level 

from left to right.     (See Figure 3.1). 
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level 1 

level 2 

level 3 

3*9 

FIGURE 3.1 

Thus nodes at level j , j " 1,2,..., from left to right have labels 

I*'1  -t- m ,  a - 0 2j"1 . (3.2) 

Note tnat the left and rignt successor of a node labelled  x have laoels 

2x and 2x + 1 respectively, left successors always have even labels, right 

successors have odd labels ( the root being an excepcion). 

.iext consider a fixed binary tree with a nodes and for every label x 

of the form (3.2) define 

( 0 if there is no node with label x , 
d(x) -  j (3.3) 

( 1 + d(2x) + d(2x + 1)  if there is a node with label x . 

N'ote that d(x)  is simply the number of nodes in a subtree with root at x , 

in particular d(l) * n and  d(x) = 1  if and only if the node labelled x 

has no successor, i.e., is a leaf. 

Lama: There is a one-to-one correspondence between binary trees 

with n nodes and height not exceeding k and the set D(n,l ) 

of vectors 

(d(l),d(2),...,d(2k - 1)) 

with non-negative  integral  components satisfying the  conditions; 
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(1) d(l) - n , 

(2) For all J - 1 1c 

l*'1 <_ x < 2J-1 => 0 < d(x) < 2k'i+1 - 1. 

(3) d(2x) + d(2xfl)   > 0   => d(x) - 1 + d(2x) + d(2x+l)   . 

Proof;    Given    a    binary    tree    the    numbers    d(x)    are    uniquely 

decined by (3.3).    Property (1)  is obvious, property (3)   follows from 

(3.3)  since nodes    2x    and    2x + 1    are successors of node    x , hence 

if there is a node with labels either    2x    or    2x + 1    there must be one 

with label    x .    Property   (2)   is necessary since if it were violated 

then there would be a subtree with root at level    J    having at least 

2k"J+l    nodes 9nd the height of the tree would then exceed    k  .    Con- 

versely, given a vector    (d(l) d(2It-l))    satisfying (1)  -  (3), 

construct first a complete binary tree of height    k    and then eliminate 

all nodes with labels    x    such that    d(x)  - 0  .    Properties   (1)  -  (3) 

then guarantee that the result is a binary tree with exactly    n    nodes. 

k A vector    (d(l) d(2 -1))   e D(n,k)    can be used to compute the number 

of permutations mapped into the  tree corresponding to this vector.    Consider 

a permutation    Tr(l,...,n)  - (s. s )    mapped Into a binary  tree with height 

not exceeding    k    and look at  the node into which a particular symbol, say 

s.   ,  is mapped.    Let    x.    be the label of this node and let    L(s.)     and    R(s.) 

be the ordered subsets of    (s.,,...,s ),    which are mapped into the left and 

right subtrees of the node    x.   .    By the very nature of the mapping if the 

elements of    L(s ) U R(s )    are reshuffled the tree is not changed as  long as 

the order of elements within each subset    L(s.)    and    R(s.)     of    L(s.) U R(s.)    is 

preserved.    But the numbers of elements in    L(s )    and    R(s.)     are    d(2x.) 

and    d(2x.  + 1)    respectively so  that the nusber of permutations  resulting 
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from such a reshuffle Is 

[dilxj + d(2x1 ♦1)1! [dCx^ - IJ! 

d(2xi):  d(2xi + 1)'. "      d(2xi): d(2xi + 1)1       ' 

using (3.3) and d(x ) > 0 (since s.  Is mapped Into a node labelled x ) 

Repeating this argument for each node of the tree corresponding to 

It 
(d(l) ,... ,d(2 -1))    gives  the total number of permutations 

" d(2x): d(2x + D:    • 

k-l where the product is over all    d(x)  > 0  ,    x ■ 1,...,2        - 1.     From here 

using the  lemma and  (3.1) we obtain the formula 

p(Hnlk)"   h"    ^       n dOvV üoUn'      • (3-4) Q a*  deDTn.k)        d(2x). d(2x+l). 

Note that if d' - (d'(l) d,(2lc - 1))  is obtained from d - (d(l),... ,d(2k-l))  , 

by 
( d(x)  if d(x) > 0 

d^x) - { , (3.5) 
( 1    if d(x) - 0 

the  formula (3.4)  takes on a simpler form 

P(Ha<k)     - 2^     (      0        d'Cx)   j (3.6) 

Unfortunately,  except in a few special cases,  the set    D(n,k)     is quite 

complicated for  (3.6)   to be useful for computation.    Again a recurrence re- 

lation may be preferable. 

Indeed, such a recurrence is  quite easy to derive.    Consider the  left 

and right subtree of  the root of a random binary  tree with    n    nodes.     If 

J    is  a random number of nodes in  the left subtree then we have 

Hn+1.  l+max {^   ,  Hw)  . (3.7) 
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Now    J    is simply the number of symbols In s random permutation 

ir(l,... ,n+l)  ■ (s,,... ,s  .,) , which are less  than    a,   .    Therefore,    J    Is 

uniformly distributed over    {0,...,n},  and    H.    and    H are conditionally 
«j      n—j 

Independent given J . Consequently 

P(«n+1 - 1 1 Ic | J - j) - P(Hj 1 W^ 1 W . 

from which by calling 

F(n,k) - P(Hn lie) (3.8) 

and taking the expectation we obtain the recurrence 

n 

F(n+l,lc+l) - -t  y^F(j.k)F(n-J.k) 
j-o 

vaUd for     n >_ 0 , k >_ 0    If we define       / (3.9) 

!1 if k - 0 , 

0 if k > 0 . 

! 

(3.10) 

It may be noted that (3.9)  gives 

F(n,k)  ■ 1    for    0 ^ n £ k    ,     and 

F(n,k) ■ 0 for   n ^ 2K  ,  as expected 

Now (3.9) can be used to calculate the numbers F(n,k) for moderate values 

of k and n .(see Appendix, Tables A.2 and A.3, and [2]), however the memory 

requirements increase rapidly. 

It can also be used together with (3.10) for some special choice of n 

and k . For instance for n close to 2 -1 we obtain 

k      2^ 
F(2k-l,k) -  n (~J-] ,      k > 1 , (3.11a) 

F(2k-2,k) - (2k-l)F(2lc-l,k)  ,  kil, (3.11b) 

F(2k-3,k) - (2k-l)(2k"1-l)F(2k-l,k) , k >. 2 , (3.11c) 
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and a few aore.  Note that (3.11a) is the probability of obtaining a full 

tree of height k . However, these few terms are of minor interest. 

Another possible approach is to use generating functions.  Defining 

n"0 

we have ümnediately from (3.9) the relation 

fk+1(x) - 1 + / fk (y)dy , f0(x) - 1 . (3.13) 

Note chat fk(x)  are again polynomials, f. (0)«1 , and that for all x e (0,1] 

fk(x) < fk+1(x) ♦ (1+x)"  as k-H» . 

It is hoped that (3.13) can be used to obtain an asymptotic distribution of 

the heights H    .    However, we have not been successful in that respect 

to date. 

It has been suggested to us by A. Uashbum that a lower bound on the 

expected height E{H } can be easily obtained from (3.7). Taking expecta- 

tion we have 

E{Hn+l} " 1 + E{max(Hj • Hn-J
)} (3-14) 

and conditioning upon J 

E{max(HT, H T) | J-j} > max(E{H,}, E{H ,}) . 
J  n-J      —      j     n-j 

Since    J    is uniformly distributed over    {0,...^}    this implies 

n 

E{max(HJ,  H^ T)} >    ^     ^   max(E{H:j}  , E{Hn_j})   . (3.15) 
J-0 

Hence  if    a     ,  n ■ 0,1,...,    is a sequence of numbers defined recursively by 
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n/2<j<n 

^^inaxCo. ,a      )    - 

J-0 

n/2<j<n 

an/2 + 2    ^  -   0^       for    n    even. 

Since clearly    o    ■ 0(n)    we have as    n -»■ • 

o   — 1 + n 
n/2<j<n 

On the other htuid,  let    Y    be a random variable defined by 

nY 
I a-J       if Hj < H^ . 

Then 

24 

n 

Vi ■:L + i?r £maat(0j'Vj) > ao -0 • (3-16) 

j-0 

it is easily seen from (3.14) and (3.13) that 

E{H } > o    for all   n-0,1.-.. (3.17) 
n — n 

Note that    a      is a strictly increasing sequence so that n 

2 ^        öL.       for    n    odd  , 

which upon approximating the sum by an integral yields 

1 

a(t) ~ 1 + 2  A a(ty)dy  . (3.18) 

1/2 

nY    <    max{J,n-J}  , (3.19) 



and by (3.7) 

E{Hftfl} - 1 + E{HnY}  . (3.20) 

Wow for large n , Y Is uniformly distributed over  ( T > 1) i an^  since 

U(n) - E{Hn} 

Is an Increasing function of n we get from (3.20) by conditioning on Y and 

applying (3.19) the asymptotic inequality 

1 

u(ny)dy (3.21) 

■1/2 

1 

u(n) <. 1 + 2 I 

valid as n -»■ » . But this together with (3.17) and (3.18) indicates that 

we should have in fact 

li(n) - a(n)  as n + <* (3.22) 

where 3(t)  is a solution of (3.18). It is easily verified that (3.18) has 

a solution 

/^   ^n t 

where    a    is an arbitrary constant..    But as    u(n) -* •    the constant can simply 

be disregarded and we have an asymptotic equivalence 

u(n) ~ (1 - &i 2)"1 ^n n - 3.25889 la n (3.23) 

as    n -*■ >  .     (See Appendix, Tables A.2 and A.3). 
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4.  mm RESULTS FOR RANDOM BINARY TREES. 

We now turn our attention to some other quantitier associated with random 

binary trees. In particular we wish to study the process of growing the tree 

as the number of nodes Increases. A convenient way to visualize such a process 

Is to consider a sequence X^X-,... of Independent random variables with a 

common continuous distribution and take as our permutation the ranks of 

X^-.-.X  for each n - 1,2  Clearly, for each fixed n all resulting 

permutations are equally likely, and each new symbol. I.e., rank of X .. , Is 

uniformly distributed over {1 n+1}. 

If for some n we have a random binary tree then a new symbol will be 

mapped Into a new node.  This new node can appear In one of n+1 possible 

locations In the current tree. Following Knuth [6] we will refer to these 

locations as vacancies of the current tree.  They are depicted in Figure 4.1 

as empty squares. 

FIGURE 4.1 

Let for n > 1 , j > 2 , V  . be the number of vacancies at level J at 
—     —     n,j 

time n , i.e.. in a random binary tree with n nodes.  Clearly V . = 0 

for j > Q+i and 

xx,Z,        n,J      u,n+i 
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Also, obviously 

Suppose now that at time    n    the vacancies have values    v    .,...,v..    ,,   . rr n,z n,n+i 

Since a new node Is equally likely to fill any of the   :urrent    n+1    vacancies, 

the probability that it will fill a vacancy at level    j    equals 

XL 
n + 1      ' 

But  then 

while 

a+l,j VJ"1   ' 
V ■ v +2 
n+l,j+l        n,j+l ' 

n+1,1 vn   .      for all      Ifj   ,  l^j+1  . 

Thus If we define a sequence of random polynomials 

Wn(x)    "    Z ^.J  ^     '    **  ' 

we see that  these polynomials  form a Markov chain with transition probabilities 

P(WQ+1(X)  - wn(x)  + xt'hlxrl)   |  Wn(x)   - wn(x))   - ISxL.    , 

n >_ 1,    j  - 2,...,n + 1  ,    and the Initial state 

W. (x)  « 2x .      In particular we then have 

n+2 

E{wn+1(x)   |   Wn(x)J.    -    Wn(x) +   2xJ-1(2x-l)  XL 
J-2 

■    W  (x)   1 +      + . ,    n >^ 1  . Consequently 

n+1 

n. 2x(2x+l)   •••   (2x+r.-l) ITT  2-^ 
j-2 J-l 

(2x) J-l (4.2) 
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where   I     I   are Stirling numbers of the first kind In Knuch's definition and 

notation [6].    Thus 

«{V,} - 4r [j^] •   J-2 n+1' a^1' <4-3> 

gives us the expectation of the number of vacancies at various levels. (See Appendix, 

Table A.S). Other quantities of some Interest may be obtained from here. 

For Instance the expected distribution of the number of vacancies over levels 

is Immediate 

j -2,...,n+l ; n^l . 

Next let K  be the number of comparisons needed to Insert a new (n+l)st 

symbol into a binary tree by the algorithm described in the introduction. 

Then the probability 

P(KQ - K)  - E{p(Kn - K|Wa(x))}. E j-gfftlj    - vnU + 1)   . 

<ml,...,n  ,    n >  1   , 

since the number of comparisons is < if and only if the symbol fills a 

vacancy at level ic+1 . Recalling that the Stirling number     is also the 

number of permutations of n symbols with exactly <    cycles we can write 

P(Kn - K>  - IST ««W ' 

where q (K)  IS the probability that a random permutation of n symbols has 

K    cycles.  (One wonders whether the cumber of comparisons can be related to 

„he number of cycles.)  (See Appendix, Table A.7). 
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With 

p(Ka" ^ "T^iyru] • *m 1 n • 
the generating function (by definition of the Stirling number) Is 

n 
<   n 2x + <-l 

Gn<x) 

<-i        Kml 

Hence    k      Is a convolution,    k    ■ x, + • • • + x    , where the x  's    are Inde- n '      n        1 n ' K 

pendent Bernoulli varlates: 

i 
1   p<" ^r 

X 

<-i 
0    q< -^1 

n 

Consequently un - B{kn)    -   ^P,,    -    2(J + J+--.+   ^j 

<-l 

"    2^n+l " »   ' 

with    U      representing the Harmonic number   [6]   (See also  the Illemann Zeta 

function In Abramowltz and Stegun   [1].). 

n n n 

- Var   {k  } -    y     p q      -    2   }      -^r - 4   7      —- 

<«1 <«1 <"l 

-    2(Hn+l " «  " 4<Hn'l ' ^  * 2 an+l " 4 Hn!l + 2  ' 

Since asymptotically  [5] 

n 

(2)       ^ 1 
Hn 6--^r + 0(-) • n 

with    Y    Euler's  Constant,    0.5772..., 
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we obcaln for the number of comparisons 

M ~2{Y-1 + ^n(nfl)} - 2 £n(afl)  - 0.8456   •••     , 
n 

2 IT,1 

an-2{Y+l -TT + £n(n+l)} - 2 £n(iH-l) - 3.4253 •••  . 

Since |x I <_ 1 and a -<■ » , ch» central limit theorem applies, 

yielding 

P(-V-^ < x) ♦♦<«) - "=  A  2 dy . 

Also, by the Berry-Esseen Theorem (c£. Feller [4], p. 544) 

sup Ipf^-Uii) - Kx) T l'^) ■ 1 »x 
a 
n 

where 
n n 

3 
r S1^ "PK'  " 2 PA (P< + ^ ) n 

<"1 K"l 

Asymptotically, 

: - -2 fH(4) - l) + 4 (V
3> - l) - 3 f H(2> - l) + H   - 1 n    \ n+1 /    \ nfl   /    \ n+1   /   n+1 

«» 2 
*• - TT + 4(0.20205 ...) - |-      + Y + £n(Q+l) + 1 

- £n(n+l) - 4.714 

so that the bound 

a 3    \Ai(n+l) / 
6 

c 
a 

which gives a fairly high rate of convergence to normality for the distribu- 

tion of the number of comparisons to Insert a new symbol. The results given 

can be used to analyze a complete binary Insertion sort algorithm operating 
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on a random string of symbols. Higher order expansions are also possible for 

describing this process. 

Further, let M    be the number of nodes at level j in a rundom binary 

tree with a nodes.  Since clearly 

with       M   -1, M  ^-."O  , n>l,  whence 
n,l    '  n,nri-l -  ' 

n _. 

M    ■  " T    /       ( T ) Vn  r+1    '     or UP011 t^log  the expectation 
r= 'J 

r-j   L   J 

(See Appendix, Table A.4) 

Note that 

E 
^ 

M ^l   Mn.j( ■   ar   IJ [tj 
7 r-j 

is an expected fraction of nodes occupied at level j .  It stay be called an 

expected relative thickness of the tree at level j .  Looking again at Figure 

4.1 we see that we can distinguish between two kinds of vacancies, those which 

are attached to a leaf (and hence come in pairs) and those attached to an in- 

ternal node of the tree.  We will refer to these two kinds as twin and single 

vacancies respectively. 

Let for a > lt j > 2t  V^  be the number of single vacancies and V    J 

the number of twin vacancies at level j  in a random binary tree with n nodes. 

Clearly 

V(1' + v"'  - V ,  ;  V«1' - 0 . V«> - 2  . 
n,j   n,j     n,j     1,2       1,2 
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If at tine    n    the values of these variables are 

vU)              JV an<1        v(2)              v(2) 
VQ,2 va.n+l "^        Va.2   Vn.*-1    ' 

then filling a single vacancy at level    J    results In 

n+l,j            a,j ttfl,j+l     n,j 

with probability     —**rr ,    while filling a twin vacancy at level    j     results 

In 
V(1) - v^ ♦ 1 V(2)        -    v(2) - 2        V(2) - v(2)      ♦ 2 Va+l,j va,j + 1    '    Vl.j vu,j      Z '    Vn+l,j+l      vn,j+l + Z  ' 

(2) 
V  i 

with probability  —■--      . The remaining vacancy numbers are not changed 

If we again Introduce the random polynomials 

w(i). ww^-i t w(2). y-v(2) ^-i 
n /^   n,j n Z->   a,j 

we obtain for their expected values  the equations 

E KiM ■ sr E
 "»"« ^«<0<»'. 

Since 

«"A« ^ E ,(««   + ^L. «<«<„ ■ 

> 1 ,    with    E    W^15 (x) >   - 0  ,    E j wj2) (x) j - 2x . 

8]w<»w| + i|w<2)W U (x)[      we obtain by substitution 

«KJiW ■ SrE -a"« + sr» V«> • 

from which by using (4.2) we have 
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n-1 

r-1 

n-1 T+l 

ScfclT   Z   TÄK  E ['-i "^ 
r-1 j-2 

n-1 

Thus, 

J-2 r-j-1 L      J 

*fö|-^ E   TATT^IJ • 

j ■ 2,...,n ; n > 1 , while ehe corresponding expression for twin vacancies is 

obtained by subtracting (4.7) from (4.3) with (4.7) set equal to zero for 

j ■ nrH .  (See Appendix, Table A.6). 

We conclude this section by computing the expected number of leaves in a 

random binary tree with n nodes. From the first equality in (4.6) the ex- 

pected number of all single vacancies equals 

\ ) n~l \ ) n"1 

«j^wi-rony L rEK(1)l "feu Zr(r+1) • 
r-l r»l 

since by (4.2)  E {W (1) }■ n+1 .  The latter sum equals -r (n+1)  so that the 

expected number of all twin vacancies is n+1 - * (n+1) .  The expected number 

of leaves is clearly half the number of twin vacancies, that is  -r (n+1) . 

Thus, in a random binary tree on the average about -r of the nodes are leaves. 
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Remark:  Having in mind the process of growing random binary trees as 

described above we can also look at a random process 

Nk - mini u : Hn > k ( , NQ - 1 , (4.8) 

i.e.     the time  (■ number of symbols)  needed to grow a tree over the height 

k.     (See Appendix, Table A.8).    From (4.8)   clearly 

P(Nk > n) - P(Hn < k) - F(n,k) 

so that    g- (x)  - 1 - (l-x)f. (x)     is tne ordinary probability generating function 

gk(x) -   ^ P(\ " n)xQ 

B>1 

of the random variable    N.    .    Denoting 

ü(m,k) - E j Nk(Nk-l)   • ••   (Nk - m + 1) ( 

the m-th factorial moment of N.  and using the facr that 

.(m) .(m-1) 
M(m.k) - i-. gk(l) - m i^- fk(l) 

dx dx 

we obtain by applying Leibnitz formula to (3.13) the relation ' 

m 

ÜOiri-l.k+l) - ^j- ^(^i) y(j+l,k)il(m-j+lfk) , 

j-0 

m >_ 0   ,  k >_ 0   .       In particular with    m-0    this becomes 

Er\+i(Nk+i" ^j " 2(s{iik } )2 ' ki0 > 

Var{\+i
} ■2(E{\>)2 + E{Vi}[1-E<J,k+i>] • 

Unfortunately, it Is the first moment E {N. } , which Is hard to obtain for 

large k .  (See Appendix, Table A.7). 
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